
Teaching Programming Basics for

First Year non-IT Students

Olga Mironova, Irina Amitan, Jelena Vendelin, Jüri Vilipõld, Merike Saar

Faculty of Information Technology, Department of Informatics, Chair of Software Engineering,

Tallinn University of Technology

Tallinn, Estonia

{olga.mironova, irina.amitan, jelena.vendelin, juri.vilipold, merike.saar}@ttu.ee

Abstract—The purpose of this study is to demonstrate a

teaching methodology in a general programming course for the

first-year non-IT students at the Department of Informatics of

Tallinn University of Technology, Estonia. The authors suggest

some solutions for achieving better results in programming issues,

which are usually sophisticated for the beginners in this field.

Keywords—object-oriented programming, Pyhton, Scratch, VBA

I. INTRODUCTION

In recent years information technology is playing an
increasingly greater role in human life, both at home and at work
or study. Accordingly, "Computational thinking" is a skill that a
learner must grasp to feel confident and be ready for the future
workplace and able to participate effectively in the digital world.
Thereby the objective of computer education for the non-IT
students today is to educate them to be knowledgeable in
technical fundamentals and be able to find common ground with
IT-specialists.

In the present paper the authors try to find answers to
questions about how to achieve better results in programming
basics teaching for the first-year non-IT students.

II. THE BRIEF REVIEW OR THE CURRENT SITUATION IN THE

COMPUTING TEACHING

Recently several countries have carried out thorough
investigations of the use of information technology and courses
on computer science in different schools. Analyses have shown
that most of the courses do not meet the needs. As a result,
several new curricula have been proposed to improve the
situation [1] – [5].

In the present teaching approach to the programming course
the authors use the principles introduced there and try to
implement them in the best possible ways.

The current situation of teaching computer sciences at
Estonian schools is contradictory. Surveys show that some
Estonian secondary schools do not have informatics lessons at
all. In the majority of the schools it is taught only for two or three
years, which is a very short period to prepare learners for the
university level.

This drawback is associated with two main reasons. The first
one being that there is no nationwide Informatics curriculum in

Estonia. The second one is that Informatics subjects are not
mandatory in our schools.

A logical consequence of these reasons is the situation where
each teacher introduces learners to the material at his own
discretion: some learners draw in a graphics editor, others learn
the computer hardware, etc. In connection with this, the level of
PC skills among non-IT learners falls every year and reduces to
commonplace social networks usage. In the Informatics course
we have to take these facts into account and build the curricula
accordingly.

However, it should be mentioned that quite many school
pupils attend additional courses and learn IT and especially
programming there. Unfortunately, they are not our students in
future as usually they choose IT-specialities at universities.

Thus, the present course is aimed at students, which are not
interested in using PC in their study, excluding finding the
required information in any search system.

III. THE INFORMATICS COURSE DESCRIPTION

Basic computer education topics have been included into all
the curricula at Tallinn University of Technology, and for non-
IT specialities have been consolidated into a course named
“Informatics”. This course lasts for two semesters and students
have two academic hours weekly. Usually the group size is 20-
30 students, which annually depends on the total number of
students at the university. During the course lecturers apply
classic face-to-face classroom methods, pair or group works and
independent learning in the Moodle e-environment. The last one
gives a lot of opportunities to make the course more attractive
and dynamic to raise students’ interest and motivation.

The main learning outcomes of the Informatics course are
listed below. SA student who completes the course:

• Acquires the foundations of problem analysis and
system modelling.

• Can analyse relations between objects and provide
rationale for the algorithms and methods applied.

• Is familiar with the nature of data and objects and can
specify them and use them in programs.

• Is familiar with and can describe, using VBA/Python
and UML activity diagrams, the main activities
occurring in programs and algorithms.

• Is familiar with the nature and main concepts of object-
oriented programming.

• Can compose programs consisting of multiple
procedures and organize data flow between them.

The course aims at reaching the results in two different but
tightly linked ways: learning to understand the object-oriented
approach and getting necessary skills in building algorithms.
Both skills have to be implemented in simple applications. After
years of the experiments two programming languages were
chosen for the Informatics course. These are Python and Visual
Basic for Applications (VBA).

It should be mentioned that the Informatics course seems to
be rather complicated for most of the non-IT students. The main
problems in teaching programming at present have been clearly
identified and systemized in [6], [7]. However, the course
authors and teachers still face some problems. The biggest of
them is lack of preparation and lack of prior knowledge for the
Informatics course among the first-year non-IT students. As a
result, they have lack of motivation in the learning process,
which, in its turn, leads to poor knowledge and poor academic
results. Consequently, instructors try to improve the course
program and content from year to year with the aim of finding
the best solutions to achieve the goals and get the outcomes.

As practice shows, the main programming concepts that are
complicated for the non-IT learners’ understanding are:

• Conditional statements and iterations

• Parallel and sequential processing

• Data

• Subroutines

At the same time, they are the most important concepts in
programming and there is no opportunity to learn and teach
without them.

The authors suggest ways to help non-IT learners to grasp
the programming basics - the implementation of the visual
programming to the Informatics course before any serious
coding.

IV. VISUAL PROGRAMMING

 As practise shows, for better comprehension, it is good to
graphically demonstrate and provide an opportunity to try out
things that are hard to understand.

A new and rapidly upcoming way in teaching programming
basics is visual programming using an environment which has
been created especially for learning. The most popular are
Scratch [8], Snap! [9], Blockly [10] graphical tools, which make
the programming process much easier for the beginners,
especially for non-IT, who have not any experience in building
algorithms, programming and coding.

In the presented Informatics course the graphical
programming environment Scratch is used as a supporting tool
before VBA or Python. After a few years of practice, the authors
came to the conclusion that it is an effective introductory tool to
understand both the object-oriented approach and the
functionality of a program. This conclusion is reinforced by
some facts:

• Syntax errors are impossible in Scratch.

• Scratch works as an interpreter.

• Graphical command blocks give an excellent visual
picture of the different controls, used in the program.

• Scratch is simple and expressive, it makes
understanding the behaviour of created objects easier.

With regard to object-oriented programming, creation of
objects in Scratch is provided by drawing or importing graphics.
Scratch objects are named sprite and each one has its own
properties and methods. Combining the blocks for each object
creates the methods. Some of the blocks are used to show the
reaction of the object to some events. Thus, we see here the main
aspects of object-oriented programming resulting in an attractive
animation.

Let us see how Scratch solves the problem areas in
programming basics, which were mentioned above:

A. Conditional statements and iterations

Using Scratch blocks makes it easy to show students how
iterations work – after its implementation learners immediately
see the result: multiple iterations of chosen blocks (Fig. 1).

Fig. 1. The iterations in Scartch

Using branching blocks in Scratch helps students to compose
if-sentences. For example, it becomes clear why they have not
written the second condition in them (Fig. 2).

Fig. 2. The branching in Scartch

This construction of the iteration and branching blocks gives
a clear picture about the actions inside these blocks.

B. Parallel and sequential processing

Running each script is considered a separate process. Scripts
that handle the same event will be running in parallel after the
event occurs. For example, the left scripts in Fig. 3 are
performing at the same time and they implement the reaction on
the “click” event. The right script is the same actions but they
are executed sequentially. It should be noted that it is easy to
follow and explain the difference due to animation: the right side
figure – the object first jumps and then moves; the left side – the
object is jumping and moving at the same time.

Fig. 3. Realization of the parallel and sequental processes

C. Data

Variable is one of the basic concepts in all programming
languages. Its meaning in programming differs from its use in
mathematics, which students know from secondary school. As
to lists, and especially indexation of the list elements, these are
absolutely new concepts for the first-year non-IT students and
usually cause learning difficulties and mistakes in usage.

The graphical environment Scratch provides clarity in
understanding the meaning of a variable and list concepts. All
variables and lists have to be created manually before using them
in a script. Using the command “Make a Variable” or “Make a
List” in the Data group of the blocks students try out, see and
this way understand it better as a named place in the computer
memory (Fig. 4).

Fig. 4. A variable declaration in Scratch

A variable and list images on Scratch stage (Fig. 5) give
students an overview of their values and some properties
(length), which can be changed manually and/or in a program.
Also, due to Scratch animation, learners can follow how
program processes list elements – during the process indexes of
the elements are blinking. Moreover, there are two ways to fill a
list with elements or clear a list: manually and in the program.
This greatly helps students in using lists in other programing
languages.

Fig. 5. A variable and list images on Scratch stage

Moreover, the learners have to define the scope of the created
variable or list, which leads them to better understanding the
meanings of global and local variables and demonstrates the
difference between these two. If an object (sprite) is active, only
global and local variables and lists can be used - it can be seen
immediately. Thereby students obtain the concept of the data
scope faster and better.

D. Subroutines

The ability to split a big task into smaller pieces plays an
important role in structured programming. This is the most
preferred approach in building programs.

The majority of algorithmic languages support the definition
of subroutines and functions, used in creating the code for the
pieces of the project. One of the main methods of transferring
data to subroutines is using the parameters. The authors’
experience shows that this is the most confusing topic for a
beginner.

Scratch 2.0, the new version of Scratch, provides teachers
and learners with a perfect opportunity to make this issue easier.
Learners can create and use their own Scratch blocks, where the
definition of parameters is included (Fig. 6).

Fig. 6. The user’s block creation

Students learn to create a clear structure in their project. They
divide their task into logical parts and create necessary user
blocks, providing them with parameters. Now the main script
can use standard and user-defined blocks, transferring the
necessary data by means of parameters. Fig. 7 shows the
definition and calling of the user-defined blocks.

Fig. 7. The user-defined block and its use in the main script

The next Informatics course step is to proceed with more
complicated tasks in other programming systems. Some lessons
of practicing with Scratch tools make this transition easier.

It should be mentioned that according the annual students’
feedback Scratch is the most popular module in the course.
Students emphasize that it is Scratch that gives them an
overview of the issue model and an algorithm for its solution.

The authors, one more time, would like to draw the reader’s
attention to the fact that Scratch is a tool, which was not created
to solve complicated tasks but it is an excellent instrument for
introducing programming, especially for non-IT learners.

V. PYTHON AND VISUAL BASIC FOR APPLICATIONS BASED ON

SCRATCH

As was mentioned earlier, Scratch and Visual Basic for
Applications (VBA) have a lot in common. For example, a
number of graphic objects can be placed into MS Excel
applications. There are a number of VBA methods, which have
equivalents in the form of Scratch blocks (e.g. set colour).
Therefore, the coding part of the course starts with graphical
objects animation in Excel. After that students solve tasks
related to their speciality.

During the Informatics course, the authors provide beginners
with some ready-made procedures, to be used as “black-boxes”.
For example, procedures are used that correspond to Scratch
blocks such as “wait” (Fig. 8), “move”, “glide”, “touching” etc.

Fig. 8. VBA procedure and analogous Scratch block

This enables a faster transition to more sophisticated tasks in
VBA. If students build and understand an algorithm (verbally,
on paper and/or using Scratch), they can compose the textual
solution using the existing procedures and their own commands.

The Python programming language supports structured
programming and procedural styles. Python does not require any
declaration of simple variables, which makes work with it easier
for the beginners. It has a large standard library. It is an open
source and is available to all students. The language is a high-

level language and has syntax, which allows programmers to
express concepts in fewer lines of code than would be possible
in some other languages.

As practice shows, during programming in Python beginners
usually face problems with indentations in their code. These
indentations play a great role in Python and their misapplication
can ruin the entire program. And again, Scratch helps to solve
this problem: command blocks, which are situated inside
iteration blocks and if-blocks, have the same indentation level as
commands in Python (Fig. 9).

Fig. 9. The indentations in Python and Scratch

In addition, it should be noted that writing a program in VBA
using indentations is very useful and effective for beginners to
better understand the program structure and better represent the
final result (Fig. 10).

Fig. 10. The indentations in VBA

Thus, it can be seen that the visual programming
environment Scratch really helps beginners in their starting in a
programming field. Firstly, it motivates students due to its
graphics and animation and, at the same time, helps them to
follow the created objects´ behaviour. Secondly, it has not any
syntax errors. Finally, Scratch is a remarkable tool for
introducing a problem solution algorithm.

VI. THE TEACHING METODOLOGY

For complicated tasks in text programming (Python, VBA),
included in the training program of the Informatics course,
teachers and students together try to build UML (Unified
Modelling Language) activity diagrams to describe algorithms.
It is the first step in any task solution. In addition, a verbal
description and pseudo code are typically used.

Now, when students create Scratch projects as an
introduction to programming, teachers can also use its scripts to
visualize, formulate and describe the problem.

At the beginning of the programming module of the course
(after Scratch), the teacher provides the students with a prepared
model (UML, pseudo code or Scratch script), which is analysed
in a group. The analysis is followed by writing the program code
according to the given algorithm. Later on, students have to
create the models themselves.

In addition, the course instructors always try to give students
tasks with a similar content to solve. If a student has created a
model in UML and after that the same application in Scratch was
done, it is easier for him to "translate" it into the VBA or Python.

Thus, it should be emphasized once again that if a learner
understands the content of the model and the algorithm, it is
easier for him to understand the syntax of any language and,
finally, to grasp it faster.

It should to be mentioned that according to the test [11] most
of present students are visual learners [12], [13], who want to
see “how it works”. Based on this fact, the Informatics teachers
try to maximally visualize all the course content. In addition to
learning materials in Khan Academy style [14], instructors teach
students to use visualizing tools such as the built-in Locals
Window in VBA and the Online Python Tutor [16].

These instruments help students to follow the program
execution similarly to Scratch, but on a higher difficulty level.
Although Online Python Tutor has some drawbacks (it does not
support work with graphics, time and files), it gives an
opportunity to check each step of the program code with its
results – values. More similar opportunities are provided by the
Locals Window in VBA.

In addition, during the course teachers give students tasks
where they should find and correct some errors in an already
ready-made program. These tasks raise students’ interest and
motivate them, especially if it is presented in a competition form
and give an opportunity to get some bonus points for future
exam.

As a group-work assignment during contact lessons it is also
possible to offer students to play a game: they have the algorithm
of a program and each student in class should write one line in
the code. This method is quite controversial, but it is useful at
the beginning of coding, when students just learn the basics.
Afterwards, when each student has his/her own programming
style, it is not so useful. However, it teaches to understand
others’ manners and proves and demonstrates why one solution
can be better and more logical than another. It should be noted
that this is important knowledge in any subject, not only in
programming.

The course authors have also worked out a test system,
which uses tasks similar to the pre-prepared program tasks.
However, in tests students have to fill in gaps in the program
blocks. Doing this, students learn the syntax and learn to
understand the algorithm.

CONCLUSIONS

The issues reviewed in this paper are very useful in the
process of understanding modern concepts in building
applications and, hopefully, help students in their future study
and professional work.

Based on the above said, it should be concluded that the
authors of the Informatics course for the first-year non-IT
students focus mostly on the model, algorithm and their
visualization, rather than teaching syntax and coding techniques.

Visualized tools like Scratch are a good way to introduce
and, afterwards, better and faster understand the main concepts
of object-oriented approach. In addition, Scratch makes it easier
to write a programming code in any language when these
concepts are clear. After “the first level understanding”, any
programming process for non-IT students and, especially for the
beginners, should be visualized in any case using suitable
instruments.

In the future development of the described Informatics
course, the authors try to keep up with times and main trends in
computer education as [16], [17].

REFERENCES

[1] CSTA K–12 Computer Science Standards. 2011. Available at:
http://csta.acm.org/Curriculum/sub/K12Standards.html

[2] AP Computer Science Principles, 2011-2016. Available at:
https://advancesinap.collegeboard.org/stem/computer-science-principles

[3] CSTA Computational Thinking Task Force. Available at:
http://csta.acm.org/Curriculum/sub/CompThinking.html

[4] UK. The Royal Society. „ Shut down or restart? “ The way forward for
computing in UK schools. Retrieved from:
https://royalsociety.org/~/media/Royal_Society_Content/education/polic
y/computing-in-schools/2012-01-12-Computing-in-Schools.pdf

[5] UK. Computing in the national curriculum: a guide for secondary
teachers. Retrieved from:
http://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf

[6] A. Robins, J. Rountree, & N. Rountree, 2003. Learning and Teaching
Programming: A Review and Discussion. Computer Science Education,
13(2), pp. 137-172.

[7] A. Kak, 2014. Teaching Programming. Available at:
https://engineering.purdue.edu/kak/TeachingProgramming.pdf

[8] MIT Media Lab, 2013. Scratch. Available at: http://scratch.mit.edu/

[9] Snap! Available at: https://snap.berkeley.edu/

[10] Blocky. Google Developers. Available at:
https://developers.google.com/blockly/

[11] B. A. Soloman, and R. M. Felder, (n. d.). Index of Learning Styles
Questionnaire. Retrieved from:
http://www.engr.ncsu.edu/learningstyles/ilsweb.html

[12] O. Mironova, T. Rüütmann, I. Amitan, J. Vilipõld, M. Saar, ”Computer
Science E-Courses for Students with Different Learning Styles”, in:
Annals of Computer Science and Information Systems: Federated
Conference on Computer Science and Information System, Kraków,
2013, pp. 735 - 738.

[13] O. Mironova, I. Amitan, J. Vendelin, M. Saar, T. Rüütmann, “Strategies
for the Individualization of an Informatics Course”, in: Annals of
Computer Science and Information Systems: Federated Conference on
Computer Science and Information Systems, Warsaw, 2014, pp. 835 -
840.

[14] Khan Academy. Available at: https://www.khanacademy.org

[15] Ph. Guo. Online Python Tutor. Available at: http://www.pythontutor.com/

[16] Exploring Computer Science. Retrieved from:
http://www.exploringcs.org/

[17] National Science Foundation. Retrieved from: http://www.nsf.gov/

