
Teaching Computing for non-IT students
Experience of Tallinn University of Technology

Olga Mironova, Jelena Vendelin, Irina Amitan,

 Jüri Vilipõld, Merike Saar

Department of Informatics

Tallinn University of Technology

Tallinn, Estonia

{olga.mironova, jelena.vendelin, irina.amitan,

juri.vilipold, merike.saar}@ttu.ee

Tiia Rüütmann

Department of Industrial Psychology

Tallinn University of Technology

Tallinn, Estonia

tiia.ruutmann@ttu.ee

Abstract – the present paper demonstrates the teaching

methods and principles in informatics course for the first year

non-IT students at Tallinn University of Technology, Estonia. The

authors suggest some ways for active learning and achieving better

results in the issues that are usually complicated for the beginners.

Keywords—computer science; informatics; teaching methods;

Scratch; Pyhton; VBA; algorithm; program; non-IT

I. INTRODUCTION

Every area of life today is powerfully affected by the
explosion of new information technologies, robotics,
biotechnology and the increased blending of invention with
scientific discovery. What professionals know and can do are
critical resources for the society today.

The purpose of present-day engineering education is to
provide learning, which is required by students to become
successful specialists or educated workers with technical skills,
social awareness and knowledge of innovation. A combined set
of knowledge and attitudes, based on technologically complex
and sustainable products, processes and systems, is essential to
strengthening productivity, entrepreneurship and excellence in
the society. Accordingly, we should improve the quality and
nature of education. Thus, the objective of engineering
education today is to educate students to be knowledgeable in
technical fundamentals.

II. THE INFORMATICS COURSE DESCRIPTION

The Informatics course, designed for the first year non-IT
students is a responsibility of the Institute of Informatics at
Tallinn University of Technology.

The aim of the course is to develop logical, analytical and
algorithmic reasoning skills as well as the ability of investigating
problems and tasks in a systematic way. This is what is tried to
achieve through two main parts of the course.

The duration of the course is one or two semesters,
depending on the speciality of the students. The course is taught
in three languages: Estonian, English and Russian.

As the first stage, the students learn to create applications
with standard general-purpose office software; the second part
of the course is devoted to the basics of programming. During

the whole course the instructor is guiding the learner to solve
problems using the object-oriented approach.

A. The First Part. Applications Using General-Purpose

Software

The learning process starts with creating documents and
presentations. It is followed by spreadsheet processing, where
students deal with formulas, diagrams, built-in functions and
facilities. The aim of this part is to get familiar with the large
amount of software products and find out the best tools.

This comparatively simple part provides students with
deeper skills than needed for an average white-collar work.
Students create applications which have to be flexible and
reusable. Creating styles, master documents and templates
enables to demonstrate and practise document and presentation
design. In spreadsheet applications, the principles of data
processing are introduced, using data tables as an
implementation of object classes. All the topics are shown using
MS Office programmes, but the students are encouraged to use
the same principles to solve tasks using any other software. The
duration and contents of different modules depend on the field
of study of each students and is coordinated with their
curriculum.

B. The Second Part. Programming

In the second part of the course the basics of programming
in practice and the main principles of algorithmization are
introduced. This part combines the object-oriented approach of
solving problems with algorithmization and functional
programming. The main goal of this part is to teach logical and
algorithmic thinking, as well as systematic investigation.

It should be noted that the programming part of the
Informatics course is usually more complicated for most of the
students. The difficulties in teaching programming have been
described and systematized [1], [2]. However the problem
remains. Therefore, the contents of this part varies from year to
year and from speciality to speciality, in the attempt to find the
best environment to fulfil the goals.

After a few years of practice we came to the conclusion that
a graphical environment such as Scratch [3] is an effective
introductory tool for understanding both the object-oriented
approach and functionality of a programme.

Scratch is not designed to solve complicated tasks, but it is
simple, very expressive and makes understanding the objects a
game.

Creation of objects is solved by importing or drawing
graphics; combining the blocks for each object creates methods
for these objects. Some of the blocks are used to show the
reaction of the object to some events. We see here the main
aspects of object-oriented programming resulting in an attractive
animation (Fig. 1.).

Fig. 1. A fragment from the application in Scratch

The next step is to proceed with more serious tasks in a way
which could be useful for the students in the future.

The solved problem has to be analysed and described in a
model. Building the models for applications is supported by
diagrams in UML (Unified Modelling Language). It helps the
learners to reach the solution without reference to any of the
programming languages. At the beginning, the teacher provides
the students with a prepared model, which is analysed in a group.
The analysis is followed by writing the programme code
according to the diagrams. Later on, the students have to create
the models themselves.

Different environments and programming languages have
been used during the years. At the moment, two main streams
are used: Python and Visual Basic for Applications (VBA).

There are several arguments to prefer one over the other.

Python supports structured programming and procedural
styles. In addition, Python does not require the declaration of the
simple variables, which makes work with it easier for the
beginners. It has a large and comprehensive standard library.
Python interpreters are available for installation on many
operating systems, allowing Python code execution on a
majority of systems. It is an open source and is available to all
students. The language is a high-level language and its syntax
allows programmers to express concepts in fewer lines of code
than would be possible in some other languages. There are a lot
of tutorials and visualized debugging tools available. It makes it

possible to provide learning support in different ways and
everyone can find the most suitable one for himself. On the other
hand, the huge amount of information is often confusing and
students need detailed guidelines from the instructor.

Python supports the object-oriented approach, but a lot of
work could be done without it. It seems to be rather complicated
for the beginner to orient in the documentation of the built-in
classes and classes from different libraries. In our introductory
course we usually do not include creation of classes and use only
some of the existing objects. Therefore, the object-oriented
approach is not taught and is limited to possibilities provided by
Scratch.

Visual Basic for Applications as well as Python support
structural programming and provides the programmer with
many built-in facilities. The text editing and debugging tools for
the programme code are visual and well observable.

However, using VBA cannot go far without introducing
objects. There are many classes in the standard environment that
can be used with their properties and methods.

VBA procedures are attached to the applications, so there are
no interface problems (as the interface is included in the
application itself). On the other hand, one has to use the object
classes of the application for any input or output. However, some
of the objects have a complicated structure and relationships
with other classes, which is confusing for the majority of the
beginners.

It was found that using MS Excel for application creation is
the easiest and most understandable way to practice using
classes. This is one of the reasons why MS Excel has been
chosen as an environment for creating applications with VBA.
The classes of worksheets and cells are comparatively easily
used. The expressions and many of the built-in functions in VBA
have similar names and arguments with those in Excel. These
topics are covered in the textbook [4].

C. Teaching School Teachers and Pupils

It was found that secondary school students are very
differently prepared for the university Informatics course. There
is no common programme or any teaching system for computing
subjects in Estonian schools; some of the schools do not teach
them at all.

Several classes covering some topics of our Informatics
course, mostly including programming, are organized both to
teachers and pupils of secondary and elementary schools. Some
of the materials were prepared specially for these classes, such
as [5], [6] and [7].

The aim is to introduce the idea of the university course to
teachers and to motivate them to pass the knowledge on to their
pupils. The classes for pupils try to introduce programming in
the form of a game and prove that it is not that complicated as
most of them believe it to be.

With these courses for school pupils and teachers we provide
better preparation for university.

III. TEACHING STRATEGIES

A. The Principles

One of the main problems concerning the first year students
is that they are not enough prepared to study on their own as
expected at university.

Another one is lack of motivation, because the first year
students have usually little idea of what knowledge and skills
they will need in future.

Trying to reduce the difficulties in the learning process and
improve motivation, we combine different methods of active
learning and teaching throughout the whole course [8], [9], [10].
Classic face-to-face classroom methods, group work and
learning in the Moodle e-environment are used [11].

We find it very attractive to use the project-based method of
learning. In fact, it has better results with students who have
previous working experience, and is more difficult to implement
with students who have just recently finished a secondary school
(as they do not see any links with real life). However, we try to
find motivating tasks as well as link our activities to other
courses, such as Chemistry, Mathematics, Physics or Business.

B. The Organization of Learning Process

The contacts with the instructor take place once a week and
last up to two or three academic hours. During this
comparatively long time students are kept active and motivated.
To achieve it, different styles of active teaching and learning are
applied.

The lesson usually starts with a short test on previous topics.
In the middle part the students start solving a new or continue
solving a problem started last time. At the end, students are
asked to provide feedback with conclusions on how easy or
difficult the lesson was, and whether they understood the
purpose of the things taught.

C. The Testing System

To understand which level of difficulty we should apply in
our course, we have to know the students’ level of preparation
for the subject. To get this information, we hold a test at the
beginning of each semester. This test is based on alleged
knowledge, which is necessary for studying Informatics. In
accordance with their level, the students then get their learning
materials and assignments.

The same test is held at the end of each semester. Last year’s
statistics give us an opportunity to evaluate the effectiveness of
the applied the teaching methods [12].

At the beginning of each lesson the students take a short test
to check their understanding of the material from previous
lessons. This test does not take much time (approximately 5
minutes) but it gives students a stimulus to open the material for
at least once before each lesson. As a result, students have
continuous learning throughout the course.

At the end of each lesson we ask anonymous feedback about
the new material and the lesson organization. This feedback
gives us an overview of student satisfaction. Because we try to
change our approach to teaching computer sciences, this kind of
feedback is very useful for us. Due to its periodicity, we

continuously monitor the learning process as well as students´
progress.

D. The Teaching Methods

We try to prepare students for effective use of the standard
computer equipment for their speciality.

One of our problems related to teaching computer science is
the place of our subject in the university curriculum. First year
students do not have to solve real issues or tasks related to their
speciality. Therefore, they do not need to use computers for
learning and, as a result, they are not motivated to learn
computer science. Our aim is to show how they can raise the
effectiveness of their learning and work through the correct use
of computers. In addition, it is very important to teach students
how they can use the created algorithms to solve problems in
their future work.

In teaching we use tasks where students have to make a
project containing an analysis of initial data and data structure;
the results and their structure as well as the methods that are
necessary for the analysis. For example, students of the civil
engineering faculty make projects like “Covering the floors” and
“The calculation of the amount of the material for the detail”.
For these projects students need different data from different
resources: sizes, materials, prices, etc. Students of chemical
faculty make projects related to laboratory work: calculations,
reports, diagrams, etc. Besides the analysis and development of
the application students have to present a formatted description
of their project and a user manual.

Further in the course, the students develop and automatize
these applications using the elements of programming.

In class, we often use pair work: one of the students begins
to write the programme, the second finishes it. Usually we make
those pairs at random. The aim of this division is to show
students that a correctly written programme gives them an
assurance in correct continuation, the best results and economy
in time.

This method came from the situations when students claimed
that their work is finished, the application is ready, it works and
it does not matter how it was realized. It was difficult to explain
that when the application works it does not mean that the code
is correct. When we did the pilot tests of this type of pair work
with our students they understood our approach.

In addition, we have to demonstrate to students that the
testing of the application is a significant stage. During the testing
they have to check different initial information to get the critical
values. When these values are identified, the students define how
the application should react to a situation. For example, students
have to make sure that the created application does not only give
an error message and close, but should direct the user to make
the right changes.

E. Vizualizing of Programme Execution

To better understand and obtain knowledge in programming,
it is very important to visualize the execution of the created
program/application. It helps students to understand what is
going on when the programme starts and works.

Visualization in Scratch helps students, who put the blocks
together, to immediately see the results. They do not have to
remember any syntax. They can concentrate only on the
algorithms. It is very easy to show the parallelism and sequence
of the processes using Scratch. In addition, the programme gives
an opportunity to follow the relations between the objects using
the mechanism of the messages.

Therefore, Scratch is an excellent way for learning
algorithms and object-oriented programming.

For the visualization in VBA we use the debug mode during
the programme execution. Students follow the programme step
by step and fix their mistakes faster.

The Python’s debugging system is more complicated, so for
our students we usually use an internet application that was
created for the visualization of the Python programmes [13].
Using this application students can see how their code is
working and what its input and output is.

F. Not E-learning but E-support

We do not agree with the theory of “e-learning only” for our
course. Face-to-face lessons give students an opportunity to
communicate and get necessary skills for group work with
colleagues. Sometimes we give students the opportunity to
choose a team or form a pair, but sometimes the teacher makes
the teams or the team is organized randomly. We try to prepare
our students to work in situations where each member gets
his/her own part in a project.

In addition, in the e-environment we make and use short
videos to demonstrate algorithms and programme execution for
all three environments: Scratch, VBA and Python. The same
principles are used in Khan Academy [14].

We strive to raise the motivation, as fast as is possible. In
addition, we try to create the connection between our
Informatics course and other subjects.

IV. IT AND NON-IT

In their future work non-IT people have to communicate
with IT-specialists. The joint project’s success mainly depends
on this communication. One of our aims is to teach non-IT
students to talk with IT-department using the language which is
clear and understandable for both sides.

As non-IT specialists are involved in many projects, we
hereby list the basic phases of the application creation and define
where non-IT specialists’ participation is possible or/and
necessary.

The first stage of application creation is the problem
formulation. Non-IT specialists have to define the main
functions, requirements and circumstances of the application to
be created. Clear needs formulation by non-IT specialists helps
to save time. They need to know how to explain their ideas
or/and problems to their IT-colleagues. For this explanation non-
IT people need to possess knowledge in computer terminology
and use it correctly. For effective collaboration, subject
specialists and IT-specialists should speak the same language.
The first know what they need, the last are good at how to
execute it. During their collaboration the circumstances and
criteria are specified.

As mentioned above, non-IT students have learned and can
use the UML schemes to illustrate their needs (in solving their
issues) not only in words but also graphically.

The second step is the analysis. In this stage non-IT and IT-
specialists work together. They have to define data, formulas,
connections, methods, models, means of implementation, costs
and time. If non-IT understand the basics of the project analysis
from this point of view, constructive dialogue between both
sides is possible. This dialogue is supported by the use of correct
terms.

At the stage of application design, non-IT specialists help to
create an interface and therefore they have to understand the data
and programme structure, as well as algorithms.

During the design stage the application processes are
identified. The process can be consecutive, parallel, repeating
and brunching. For their realization, different algorithm
elements are used. Scratch with its blocks suits well for learning
the terms of cycle and brunching.

In the realization/implementation stage, the non-IT
specialists help to debug the created application and check the
design.

The next step is the launch of the application. Usually, the
initial data input is the responsibility of non-IT specialists. When
they clearly understand the main principles of application
execution, they become more effective working with it.

Also, the application development is not possible without
non-IT specialists. Thus, knowing the algorithms and terms
proves helpful throughout their job.

V. SUMMARY

In their work process, non-IT specialists frequently use IT:
they are involved in the formulation of the problem, drawing
algorithms and design. Therefore, for the effectiveness of this
collaboration mutual understanding has to take place between
these two sides, IT and non-IT. Based on this and our experience
in teaching computing, we have formulated the aims of the
Informatics course.

They are:

 To teach students to organize and analyse information
and then represent it through models.

 To teach to formulate the problem in a way that enables
to use a PC to help solve it.

 To teach to apply algorithmic thinking in their task
solutions and afterwards to automatize them.

 To teach generalization and transferring the problem
solving process to other issues.

Trying to achieve our goals, we successfully apply a variety
of teaching methods and techniques.

During contact lessons, students prefer group work, which
gives them an opportunity to try the obtained knowledge in
practice and get the support not only from the teacher. In
addition, such kind of learning activities develop teamwork
skills, especially among the first year students. This way, the role

of the lecturer is a little different – we become advisors,
motivators and supporters in the students’ learning process.

E-learning in Moodle provides students with a large number
of exercises, self-tests and a variety of different kinds of
educational materials.

The practical tasks are adapted to students’ specialization:
economics, social, chemistry and civil engineering. We attempt
to create more connections between our Informatics subject and
the students’ specialty. Feedback shows that students get an
understanding of the Informatics subject and its applicability in
their future study and work.

To sum up, it should be mentioned that problem solving
methods that we use in teaching help students in their learning
not only in computer subjects. When they are able to organize
data logically and analyse the information afterwards, they can
formulate any problem in any discipline better and more
correctly. In its turn, a correct formulation of a task paves the
way for its successful solution.

REFERENCES

[1] Robins, A., Rountree, J. & Rountree, N., 2003. Learning and Teaching
Programming: A Review and Discussion. Computer Science Education,
13(2), pp. 137-172.

[2] Kak, A., 2014. Teaching Programming. Available at:
https://engineering.purdue.edu/kak/TeachingProgramming.pdf

[3] MIT Media Lab, 2013. Scratch. Available at: http://scratch.mit.edu/.

[4] Sissejuhatus VBAsse. Available at: http://rlpa.ttu.ee/vba/VBA.pdf

[5] Vilipõld, J., Antoi, K., Amitan, I. Rakenduste loomine ja
programmeerimise alused. Valikkursus gümnaasiumitele. Available at:
http://rlpa.ttu.ee/RLPA_opik.pdf

[6] Rakenduste loomine Scratchiga. Available at:
http://rlpa.ttu.ee/scratch/Rakenduste_loomine_Scratchiga.pdf

[7] Tutvumine Pythoniga. Available at: http://rlpa.ttu.ee/python/Python.pdf

[8] Felder, R. M. & Silverman, L. K., 1988. Learning and Teaching Styles in
Engineering Education. Engr. Education, 7(78), pp. 674-681.

[9] George Lucas Educational Foundation, 2014. Coding in the Classroom.
Available at: http://www.edutopia.org/topic/coding-classroom

[10] George Lucas Educational Foundation, 2014. Project-Based Learning.
Available at: http://www.edutopia.org/project-based-learning

[11] Moodle Trust, n.d. Moodle. Available at: https://moodle.org/.

[12] Mironova, O.; Amitan, I.; Vendelin, J.; Saar, M.; Rüütmann, T. (2014).
Strategies for the Individualization of an Informatics Course . In: Annals
of Computer Science and Information Systems: Federated Conference on
Computer Science and Information Systems, September 7–10, 2014.
Warsaw, Poland. IEEE, 2014, 835 - 840.

[13] Learn Programming by Visualizing Code Execution Available at:
http://www.pythontutor.com

[14] Khan Academy. Available at: http://www.khanacademy.org

